
Page 1

Airbnb business analysis

Introduction

Airbnb is the number one platform for accommodation
rentals in the United States (Similarweb, 2023), with more
than 8.4 billion US dollars in worldwide revenue in 2022
(Airbnb, 2023). This report will assess growth
opportunities in New York with a 2019 public dataset.
Through exploratory data analysis, machine learning, and
visualisations along with analysis of relationships between
location and price, the report proposes to answer the
question:

“Can we identify distinct areas for increased revenue
potential?"

Pre-processing

The dataset consisted of 16 fields and 48,895
observations. After the removal of listings with zero price
or zero availability this reduced to 31,354. Missing values
were replaced and there were no duplicates present.

Exploratory Data Analysis (EDA)

The dataset was explored through visualisations such as
bar charts, box plots, distribution plots, correlation plots
(heatmaps and pair plots), and data distributions overlaid
on a map of New York. For our business question, the
variables price and neighbourhood_group were of
particular importance. Essential categorical variables
were label encoded to prepare for clustering methods,
numerical variables were standardised for an equal
interpretation of features with different magnitudes and
distributions. The skewness and spread of the variables
were investigated, and variables were log-transformed
were necessary.

Price alone was found to not be a good indicator for
revenue because of the large variation in room availability.
Therefore, a new variable revenue_opportunity was
created to show the maximum commission that Airbnb
could make on each room assuming it was booked every
day it is available at 17% commission (Airbnb, 2020).
Manhattan has the highest revenue opportunity by some
margin, followed by Brooklyn, then Queens. This variable
was log-transformed to normalise the distribution.
revenue_opportunity by neighbourhood_group
and the log distribution are shown in figure 1.

Figure 1. Revenue opportunity

Using the number of people living in each neighbourhood
group (United States Census Bureau, 2023), the number
of listings per resident was calculated (figure 2). This

shows that Manhattan has the highest proportion of
listings per resident.

Figure 2. Proportion of listings per resident

Using the mean revenue_opportunity for each
neighbourhood_group, the potential additional
revenue for each group was calculated assuming they
could all be raised to the same level as Manhattan;
0.00832 listings per resident. If all groups could be
increased to the same level as Manhattan, Queens has
the highest additional revenue opportunity (figure 3).

Figure 3. Potential revenue increase if all groups have
the same ratio as Manhattan

Various clustering models were built using k-prototype
because it performs well with numerical and categorical
values, k-means when using only numerical variables, and
DBSCAN because it performs well with outliers. A
DBSCAN model using log_revenue_opportunity,
room_type, and neighbourhood_group provided
some useful results (figure 4). It only achieved a silhouette
score of 0.144, which is relatively low. However, the
clusters can be seen to be meaningful with each
containing a single neighbourhood_group and
room_type - except cluster -1 with 43 outliers from
across all categories which were effectively dropped.

Figure 4. DBSCAN Clustering

Page 2

price, revenue_opportuniy (figure 5), and
availability_365 were compared between the
clusters. Focusing on Queens, as the highest additional
revenue opportunity, shows that ‘Private room’ (cluster 5)
has good availability but low price and low revenue
opportunity. ‘Entire home/apt’ (cluster 8) has good
availability, high price, and high revenue opportunity.
‘Shared room’ (cluster 11) has very low price, high
availability but low revenue opportunity. Comparing
neighbourhood_group clusters, ‘Entire home/appt’
listings in Queens have a lower price than Manhattan and
Brooklyn, but availability is similar to Manhattan and
higher than Brooklyn, making the revenue opportunity for
these types of listings comparable to Brooklyn, although
still lower than Manhattan. So based upon all those
factors, a focus for Airbnb could be increasing the number
of ‘Entire home/appt’ listings in Queens.

Figure 5. Revenue opportunity distribution per cluster

Linear regression was used to try to predict the revenue
opportunity in Queens based on location, using the three
Queens clusters previously generated (figure 6).

Neither longitude nor latitude gave a reliable prediction for
revenue. There was, however, a weak correlation between
both longitude and latitude with revenue_opportunity,
trending slightly higher with a higher longitude and with a
lower latitude. This suggests revenue_opportunity is
slightly higher further West and South in Queens. As
already stated, the correlation was weak and could not be
used to predict revenues so the prediction results are not
included here.

Figure 6. Linear Regression

A k-means model was built on revenue_opportunity
using the Queens neighbourhood_group; clusters 5, 8,
and 11 from the DBSCAN, with four clusters as a
compromise between the silhouette and elbow methods
(figure 7). The silhouette score was 0.525 which is
considered a good level of cohesion. Looking at the mean

values of revenue_opportunity, latitude, and
longitude for each cluster (figure 8) shows mean
revenue_opportunity increasing with lower latitude
and higher longitude, which supports the weak findings
from the linear regression that revenue_opportunity
increases further South and West in Queens.

Figure 7. K-means silhouette and elbow

Figure 8. Mean latitude and longitude per cluster

Limitations

The analysis and report are limited to the provided data
with the addition of population data. A more
comprehensive and detailed analysis could have been
performed with the inclusion of additional fields in the
listings such as detailed room information (number of
bedrooms, bathrooms), detailed host information
(enrolment in the database, response time), short-term
and long-term availability (from 30 days to 90 days), host
acceptance rates, review accuracy, cleanliness, and
square metres. Also, the provision of additional datasets
such as detailed calendar data (information for specific
date ranges, including availability, price, and minimum
overall stay allowed) would allow a time series analysis
and detailed review of data, including exploring the
frequency of commonly used words for sentiment
analysis. Such information is publicly available
(insideairbnb, 2023).

Conclusion and Recommendations

This report has identified a distinct area of potential
increased revenue for Airbnb in New York, namely
Queens. This was managed through data analysis and
applying machine learning techniques such as clustering.

The recommendations are therefore that Airbnb invests its
resources there with a particular focus on ‘Entire
home/apt’ listings due to the promising returns these types
of listings can offer, leading to a considerable increase in
revenue.

Finally, to gain a deeper understanding of the differences
between these neighbourhoods, Airbnb can pay attention
to answering the following question: Why is Queens
currently relatively underpopulated in terms of Airbnb?

 Word count: 1,061

Page 3

References:

Airbnb (2020) How much does Airbnb charge Hosts? Available from:
https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-
288 [Accessed 08 June 2023].

Airbnb (2023) Airbnb Q4 2022 and full-year financial results. Available from:
https://news.airbnb.com/airbnb-q4-2022-and-full-year-financial-results/ [Accessed 7 June
2023]

Inside Airbnb (2023) Get the data. Available from: http://insideairbnb.com/get-the-data/
[Accessed 07 June 2023]

Similarweb (2023) aibnb.com. Available from:
https://www.similarweb.com/website/airbnb.com/#overview [Accessed 07 June 2023]

United States Census Bureau (2023) 2020 Census Results, Available from:
https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-
results.html [Accessed 08 June 2023].

https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
https://news.airbnb.com/airbnb-q4-2022-and-full-year-financial-results/
http://insideairbnb.com/get-the-data/
https://www.similarweb.com/website/airbnb.com/#overview
https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-results.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-results.html
https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census-results.html

Page 4

Appendix: Exploratory Data Analysis on
AB_NYC_2019 dataset
PLEASE NOTE:

This notebook contains only the code that is required for the charts, tables, and
visualisations presented in the Airbnb business analysis report. The complete
EDA and thought process can be found in the full notebook.

Import Libraries
In [65]:

%pip install kmodes

In [66]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
import scipy.stats as st
from sklearn import linear_model
from sklearn.cluster import KMeans
from sklearn.cluster import DBSCAN
from sklearn.metrics import r2_score
from sklearn.metrics import silhouette_score
from kmodes.kprototypes import KPrototypes
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import LabelEncoder, StandardScaler
import warnings
ignore future deprecation
warnings.filterwarnings('ignore')

Read the AB_NYC_2019.csv file

In [67]:
airbnb = pd.read_csv("AB_NYC_2019.csv")

There are a lot of missing variables, especially last_review and reviews_per_month.

Replace null values with appropriate values:

• name is categorical so will simply be replaced with "Replaced name"
• host_name is categorical so will simply be replaced with "Replaced host name"
• last_review is date so will be replaced with 0 (0 is not ideal for dates but we won't be using this

variable, null value is replaced to avoid any errors)
• review_per_month is a continuous variable so will be replaced with 0

In [68]:
airbnb['name'].fillna('Replaced name', inplace=True)
airbnb['host_name'].fillna('Replaced host name', inplace=True)
airbnb['last_review'].fillna(0, inplace=True)
airbnb['reviews_per_month'].fillna(0, inplace=True)

In [69]:
airbnb.drop(airbnb[airbnb.price == 0].index, inplace=True)
airbnb.drop(airbnb[airbnb.availability_365 == 0].index, inplace=True)

Page 5

Log transform price to normalise the distribution

In [70]:
airbnb['log_price'] = np.log(airbnb['price'])

Price is the charge per night which isn't a particularly helpful figure for Airbnb on its own.

We will therefore calculate the total revenue opportuity to Airbnb for each room if it were to be booked for
every day that it is available. This is of course unlikely, but it is a useful comparrison as to the potential
maximum revenue of each room. The commission for each room is 17% of the price charged, made-up of 3%
host fee and 14% guest fee: https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-
charge-hosts-288

Revenue_opportunity = price availability_365 0.17

In [71]:
airbnb['revenue_opportunity'] = airbnb['price'] * airbnb['availability_365'] *
0.17

Also log transform revenue_opportunity

In [72]:
airbnb['log_revenue_opportunity'] = np.log(airbnb['revenue_opportunity'])

Figure 1. Revenue opportunity

In [73]:
plt.hist(airbnb['log_revenue_opportunity'], bins=30)
plt.xlabel('Log Revenue Opportunity')
plt.ylabel('Frequency')
plt.title('Distribution of Log Revenue Opportunity')
plt.show()

In [74]:

neighbourhood_group = airbnb.pivot_table(index ='neighbourhood_group',values =
'revenue_opportunity', aggfunc = np.sum)

https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288
https://www.airbnb.co.uk/resources/hosting-homes/a/how-much-does-airbnb-charge-hosts-288

Page 6

neighbourhood_group.plot(kind = 'bar')
plt.xlabel('Neighbourhood group')
plt.ylabel('Revenue opportunity @ 17% commission')

Out[74]:
Text(0, 0.5, 'Revenue opportunity @ 17% commission')

Figure 2. Proportion of listings per resident

In [75]:
Create new dataframe, .reset_index() to convert series into dataframe
counts_df = airbnb.neighbourhood_group.value_counts().reset_index()
counts_df.columns = ['Neighbourhood Group', 'Listings']

Create population dict from cencus data
population_dict = {
 'Manhattan': 1.629e6,
 'Brooklyn': 2.577e6,
 'Queens': 2.271e6,
 'Bronx': 1.476e6,
 'Staten Island': 476e3
}

Add population column to df
counts_df['Population'] = counts_df['Neighbourhood
Group'].map(population_dict).apply(lambda x: int(x))

Add listings per resident to df
counts_df['Listings per Resident'] = (counts_df['Listings'] /
counts_df['Population']).round(5)

Page 7

counts_df

Out[75]:

Neighbourhood Group Listings Population Listings per Resident

0 Manhattan 13559 1629000 0.00832

1 Brooklyn 12253 2577000 0.00475

2 Queens 4298 2271000 0.00189

3 Bronx 913 1476000 0.00062

4 Staten Island 331 476000 0.00070

In [76]:
styled_df = counts_df.style.background_gradient(
 cmap='Blues'
).hide_index().format(
 {
 "Listings": "{:,.0f}",
 "Population": "{:,.0f}",
 "Listings per Resident": "{:.5g}"
 }
).set_table_styles(
 [
 {
 'selector': 'th',
 'props': [
 ('padding', '1px'),
 ('text-align', 'left')
]
 },
 {
 'selector': 'td',
 'props': [
 ('padding', '1px'),
 ('text-align', 'center')
]
 }
]
).set_properties(**{'width': '70px'})

styled_df

Out[76]:
Neighbourhood
Group Listings Population Listings per

Resident

Manhattan 13,559 1,629,000 0.00832

Brooklyn 12,253 2,577,000 0.00475

Queens 4,298 2,271,000 0.00189

Bronx 913 1,476,000 0.00062

Staten Island 331 476,000 0.0007

Page 8

Figure 3. Potential revenue increase if all groups have the same ratio as
Manhattan

In [77]:
mean_revenue_dict =
airbnb.groupby('neighbourhood_group')['revenue_opportunity'].mean().to_dict()
mean_revenue_dict

revenue_opportunity_dict = airbnb.pivot_table(index='neighbourhood_group',
values='revenue_opportunity', aggfunc=np.sum).to_dict()['revenue_opportunity']
revenue_opportunity_dict

Out[77]:
{'Bronx': 2872252.1700000004,
 'Brooklyn': 47567733.830000006,
 'Manhattan': 97984186.9,
 'Queens': 14702861.91,
 'Staten Island': 1541384.73}

In [78]:
table_2 = pd.DataFrame()

Build columns
table_2['Neighbourhood Group'] = counts_df['Neighbourhood Group']
table_2['Listings * 0.00832'] = counts_df['Population'] * 0.00832
table_2['Mean Revenue'] = table_2['Neighbourhood Group'].map(mean_revenue_dict)
table_2['Current Revenue Opportunity'] = table_2['Neighbourhood
Group'].map(revenue_opportunity_dict)
table_2['Potential Revenue * 0.00832'] = table_2['Mean Revenue'] *
table_2['Listings * 0.00832']

Hardcode Manhattan back since that is the baseline and rounding changes the
value
table_2.loc[table_2['Neighbourhood Group'] == 'Manhattan', 'Potential Revenue *
0.00832'] = 97984186.9

table_2['Potential Revenue Increase'] = table_2['Potential Revenue * 0.00832'] -
table_2['Current Revenue Opportunity']

table_2

Out[78]:

Neighbourhood

Group
Listings *

0.00832
Mean

Revenue
Current Revenue

Opportunity
Potential Revenue *

0.00832
Potential Revenue

Increase

0 Manhattan 13553.28 7226.505413 97984186.90 9.798419e+07 0.000000e+00

1 Brooklyn 21440.64 3882.129587 47567733.83 8.323534e+07 3.566761e+07

2 Queens 18894.72 3420.861310 14702861.91 6.463622e+07 4.993335e+07

3 Bronx 12280.32 3145.949803 2872252.17 3.863327e+07 3.576102e+07

4 Staten Island 3960.32 4656.751450 1541384.73 1.844223e+07 1.690084e+07

In [79]:
Currency format func
def format_currency_in_millions(value):
 return "$ {:.1f}M".format(value / 1_000_000)

format
styled_table_2 = table_2.style.format({
 'Listings * 0.00832': "{:,.0f}",

Page 9

 'Mean Revenue': "$ {:,.0f}",
 'Current Revenue Opportunity': format_currency_in_millions,
 'Potential Revenue * 0.00832': format_currency_in_millions,
 'Potential Revenue Increase': format_currency_in_millions
}).background_gradient(cmap='Blues', subset=['Listings * 0.00832', 'Mean Revenue',
'Current Revenue Opportunity', 'Potential Revenue * 0.00832', 'Potential Revenue
Increase']).hide_index().set_table_styles([
 {
 'selector': 'th',
 'props': [
 ('padding', '1px'),
 ('text-align', 'left')
]
 },
 {
 'selector': 'td',
 'props': [('padding', '1px'),
 ('text-align', 'center')]
 },
]).set_properties(**{'width': '60px'})

styled_table_2

Out[79]:
Neighbourhood
Group

Listings *
0.00832

Mean
Revenue

Current
Revenue
Opportunity

Potential
Revenue *
0.00832

Potential
Revenue
Increase

Manhattan 13,553 $ 7,227 $ 98.0M $ 98.0M $ 0.0M

Brooklyn 21,441 $ 3,882 $ 47.6M $ 83.2M $ 35.7M

Queens 18,895 $ 3,421 $ 14.7M $ 64.6M $ 49.9M

Bronx 12,280 $ 3,146 $ 2.9M $ 38.6M $ 35.8M

Staten Island 3,960 $ 4,657 $ 1.5M $ 18.4M $ 16.9M

Figure 4. DBSCAN Clustering

In [80]:
keeping less than we're dropping so just picking those features
cluster_data = airbnb[['price', 'log_price', 'neighbourhood_group', 'latitude',
'longitude', 'room_type', 'revenue_opportunity', 'log_revenue_opportunity',
'availability_365']]
cluster_data

Create a copy of the data
cluster_data_prepared = cluster_data.copy()

Encode categorical variables
le = LabelEncoder()
cluster_data_prepared['room_type_xform'] =
le.fit_transform(cluster_data['room_type'])
cluster_data_prepared['neighbourhood_group_xform'] =
le.fit_transform(cluster_data['neighbourhood_group'])

In [81]:
dbscan=DBSCAN(eps=0.9,min_samples=9)
dbscan.fit(cluster_data_prepared[['log_revenue_opportunity','room_type_xform','nei
ghbourhood_group_xform']])

Out[81]:
DBSCAN

Page 10

DBSCAN(eps=0.9, min_samples=9)

In [82]:
cluster_data_prepared['DBSCAN_labels']=dbscan.labels_
plt.figure(figsize=(10,10))
plt.scatter(cluster_data_prepared['log_revenue_opportunity'],cluster_data_prepared
['room_type_xform'],cluster_data_prepared['neighbourhood_group_xform'],c=cluster_d
ata_prepared['DBSCAN_labels'])
plt.title('DBSCAN Clustering',fontsize=20)
plt.xlabel('Feature 1',fontsize=14)
plt.ylabel('Feature 2',fontsize=14)
plt.show()

In [83]:

plt.figure(figsize=(12,8))
plt.style.use('fast')
Set the boundary of the map using longitude and latitude obtained from Google
Maps
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144)
map = mpimg.imread("New_York_City.jpg")
plt.imshow(map,extent=coordinates)
groups = cluster_data_prepared.groupby('DBSCAN_labels')
for name,group in groups :

Page 11

 plt.scatter(group['longitude'],group['latitude'], label=name,
edgecolors='black')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Properties by cluster')
plt.legend()

Out[83]:
<matplotlib.legend.Legend at 0x1437fbbb0>

plot queens here since this is used for the LR in figure 6

In [84]:
plt.figure(figsize=(12,8))
plt.style.use('fast')
Set the boundary of the map using longitude and latitude obtained from Google
Maps
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144)
map = mpimg.imread("New_York_City.jpg")
plt.imshow(map,extent=coordinates)
Queens = cluster_data_prepared[(cluster_data_prepared['DBSCAN_labels'] == 5) |
(cluster_data_prepared['DBSCAN_labels'] == 8) |
(cluster_data_prepared['DBSCAN_labels'] == 11)]
groups = Queens.groupby('DBSCAN_labels')
for name,group in groups :
 plt.scatter(group['longitude'],group['latitude'], label=name,
edgecolors='black')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Properties by cluster')
plt.legend()

Out[84]:
<matplotlib.legend.Legend at 0x143594910>

Page 12

Figure 5. Revenue opportunity distribution per cluster

In [85]:
plt.figure(figsize=(12, 8))
sns.boxplot(x='DBSCAN_labels', y='revenue_opportunity',
data=cluster_data_prepared)
plt.title('Revenue opportunity Distribution per Cluster')
plt.axis(ymin=0, ymax=15000)
plt.show()

Page 13

Figure 6. Linear Regression

In [86]:
msk=np.random.rand(len(Queens))<0.8
train=Queens[msk]
test=Queens[~msk]

Using sklearn package for data modelling

longitude

In [87]:
regr=linear_model.LinearRegression()
train_x=np.asanyarray(train[['longitude']])
train_y=np.asanyarray(train[['log_revenue_opportunity']])

regr.fit(train_x, train_y)
The coefficients
print('Coefficients:', regr.coef_)
print('Intercept:', regr.intercept_)

Coefficients: [[1.84684823]]
Intercept: [143.86871794]

In [88]:
Plot outputs
plt.scatter(train.longitude,train.log_revenue_opportunity,color='blue')
plt.plot(train_x,regr.coef_[0][0]*train_x + regr.intercept_[0],'-r')
plt.xlabel("Longitude")
plt.ylabel("Log revenue opportunity")

Out[88]:
Text(0, 0.5, 'Log revenue opportunity')

Page 14

latitude

In [89]:
regr=linear_model.LinearRegression()
train_x=np.asanyarray(train[['latitude']])
train_y=np.asanyarray(train[['log_revenue_opportunity']])

regr.fit(train_x, train_y)
The coefficients
print('Coefficients:', regr.coef_)
print('Intercept:', regr.intercept_)

Coefficients: [[-3.08822326]]
Intercept: [133.22685362]

In [90]:
Plot outputs
plt.scatter(train.latitude,train.log_revenue_opportunity,color='blue')
plt.plot(train_x,regr.coef_[0][0]*train_x + regr.intercept_[0],'-r')
plt.xlabel("Latitude")
plt.ylabel("Log revenue opportunity")

Out[90]:
Text(0, 0.5, 'Log revenue opportunity')

Page 15

Figure 7. K-means silhouette and elbow

In [91]:
create reduced dataframe
kmeans_run = Queens[['log_revenue_opportunity']]
kmeans_run

Out[91]:

log_revenue_opportunity

46 8.466216

77 8.257282

143 3.169686

161 7.433773

181 9.985874

... ...

48858 8.339195

48863 5.399700

48866 7.357390

48878 7.182200

48889 7.496181

4288 rows × 1 columns

Standardise (not really required with one variable, but still normalising for consistency)

Page 16

In [92]:
standardise numeric variables
scaler = StandardScaler()
kmeans_run[['log_revenue_opportunity']] =
scaler.fit_transform(kmeans_run[['log_revenue_opportunity']])

In [93]:
k_values = []
sil_scores = []
sq_distances = []

for i in range(2,13):
 # Initialize KMeans algorithm
 # 12 times per run to find the optimal centroids
 # random_state to ensure the same clusters every time we run this
 kmeans = KMeans(n_clusters=i, init='k-means++', n_init=12, random_state=0)

 # Fit and predict clusters
 clusters = kmeans.fit_predict(kmeans_run)

 # Compute silhouette score
 SScore = silhouette_score(kmeans_run, clusters, metric='euclidean')

 # Append to the lists
 k_values.append(i)
 sil_scores.append(SScore)
 sq_distances.append(kmeans.inertia_) # Sum of squared distances to closest
centroid

 print("Silhouette score for k (clusters) = " + str(i) + " is " + str(SScore))

Plot silhouette scores
plt.figure(figsize=(10,5))
plt.subplot(1, 2, 1)
plt.plot(k_values, sil_scores, 'bx-')
plt.xlabel('k (number of clusters)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score vs Number of Clusters')

Plot sum of squared distances (for the elbow plot)
plt.subplot(1, 2, 2)
plt.plot(k_values, sq_distances, 'bx-')
plt.xlabel('k (number of clusters)')
plt.ylabel('Sum of Squared Distances')
plt.title('Elbow Plot (Sum of Squared Distances vs Number of Clusters)')

plt.tight_layout()
plt.show()

Silhouette score for k (clusters) = 2 is 0.5893624681654775
Silhouette score for k (clusters) = 3 is 0.530886924845948
Silhouette score for k (clusters) = 4 is 0.5254176792839207
Silhouette score for k (clusters) = 5 is 0.5194508357370409
Silhouette score for k (clusters) = 6 is 0.523834365832839
Silhouette score for k (clusters) = 7 is 0.5218336849536875
Silhouette score for k (clusters) = 8 is 0.5247260216642161
Silhouette score for k (clusters) = 9 is 0.5235383488660361
Silhouette score for k (clusters) = 10 is 0.5270604910271481
Silhouette score for k (clusters) = 11 is 0.5278831498609623
Silhouette score for k (clusters) = 12 is 0.5300666182194343

Page 17

In [94]:

Initialize KMeans algorithm
12 times per run to find the optimal centroids
random_state to ensure the same clusters every time we run this
kmeans_optimal = KMeans(n_clusters=4, init='k-means++', n_init=12, random_state=0)

Fit and predict clusters
clusters_optimal = kmeans_optimal.fit_predict(kmeans_run)

In [95]:
kmeans_run['cluster'] = clusters_optimal
kmeans_run

Out[95]:

log_revenue_opportunity cluster

46 0.753796 3

77 0.600156 0

143 -3.141014 2

161 -0.005412 0

181 1.871278 3

...

48858 0.660391 3

48863 -1.501170 1

48866 -0.061580 0

48878 -0.190406 0

48889 0.040480 0

4288 rows × 2 columns

Place original lat & long back so the results can be plotted on the map

In [96]:
kmeans_run['latitude'] = Queens[['latitude']]
kmeans_run['longitude'] = Queens[['longitude']]

In [97]:

Page 18

plt.figure(figsize=(12,8))
plt.style.use('fast')

Set the boundary of the map using longitude and latitude obtained from Google
Maps
coordinates = (-74.2623, -73.6862, 40.4943, 40.9144)

map = mpimg.imread("New_York_City.jpg")
plt.imshow(map,extent=coordinates)

Group by cluster labels instead of neighbourhood group
clusters = kmeans_run.groupby('cluster')

Loop through each cluster and plot the listings in it
for name, group in clusters:
 plt.scatter(group['longitude'], group['latitude'], label=name,
edgecolors='black')

plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Properties by Cluster')
plt.legend()

Out[97]:
<matplotlib.legend.Legend at 0x286dc6b30>

Figure 8. Mean latitude and longitude per cluster

In [98]:
latitude_mean = kmeans_run.groupby('cluster')['latitude'].mean()
print(latitude_mean)

longitude_mean = kmeans_run.groupby('cluster')['longitude'].mean()

Page 19

print(longitude_mean)

log_rev_opp__mean =
kmeans_run.groupby('cluster')['log_revenue_opportunity'].mean()
print(log_rev_opp__mean)

cluster
0 40.726851
1 40.731542
2 40.739832
3 40.725164
Name: latitude, dtype: float64
cluster
0 -73.862784
1 -73.867199
2 -73.886560
3 -73.863788
Name: longitude, dtype: float64
cluster
0 0.171818
1 -0.843104
2 -2.629761
3 1.033938
Name: log_revenue_opportunity, dtype: float64

In [99]:
Convert series to df
kmeans_queens = log_rev_opp__mean.reset_index()

Merge the mean latitude and longitude with the original DataFrame
kmeans_queens = kmeans_queens.merge(latitude_mean, on='cluster', how='left')
kmeans_queens = kmeans_queens.merge(longitude_mean, on='cluster', how='left')

Rename columns
kmeans_queens.columns = ['cluster', 'Mean Log Rev Opp', 'Mean Latitude', 'Mean
Longitude']
kmeans_queens = kmeans_queens.sort_values(by=['Mean Log Rev Opp'])

kmeans_queens

Out[99]:

cluster Mean Log Rev Opp Mean Latitude Mean Longitude

2 2 -2.629761 40.739832 -73.886560

1 1 -0.843104 40.731542 -73.867199

0 0 0.171818 40.726851 -73.862784

3 3 1.033938 40.725164 -73.863788

In [100]:
styled_df = kmeans_queens.style.background_gradient(
 cmap='Blues', subset=['Mean Log Rev Opp', 'Mean Latitude', 'Mean Longitude']
).hide_index().set_table_styles(
 [
 {
 'selector': 'th',
 'props': [
 ('padding', '1px'),
 ('text-align', 'left')
]
 },

Page 20

 {
 'selector': 'td',
 'props': [
 ('padding', '1px'),
 ('text-align', 'center')
]
 }
]
).set_properties(**{'width': '70px'})

styled_df

Out[100]:
cluster Mean Log

Rev Opp
Mean
Latitude

Mean
Longitude

2 -2.629761 40.739832 -73.886560

1 -0.843104 40.731542 -73.867199

0 0.171818 40.726851 -73.862784

3 1.033938 40.725164 -73.863788

	Appendix: Exploratory Data Analysis on AB_NYC_2019 dataset
	PLEASE NOTE:
	This notebook contains only the code that is required for the charts, tables, and visualisations presented in the Airbnb business analysis report. The complete EDA and thought process can be found in the full notebook.
	Import Libraries
	Figure 1. Revenue opportunity
	Figure 2. Proportion of listings per resident
	Figure 3. Potential revenue increase if all groups have the same ratio as Manhattan
	Figure 4. DBSCAN Clustering
	Figure 5. Revenue opportunity distribution per cluster
	Figure 6. Linear Regression
	Figure 7. K-means silhouette and elbow
	Figure 8. Mean latitude and longitude per cluster

